編譯:

導(dǎo)讀

介紹使圖像分割的方法,包括傳統(tǒng)方法和深度學(xué)習(xí)方法,以及應(yīng)用場景。

基于人工智能和深度學(xué)習(xí)方法的現(xiàn)代計算機視覺技術(shù)在過去10年里取得了顯著進(jìn)展。如今,它被用于圖像分類、人臉識別、圖像中物體的識別、視頻分析和分類以及機器人和自動駕駛車輛的圖像處理等應(yīng)用上。

許多計算機視覺任務(wù)需要對圖像進(jìn)行智能分割,以理解圖像中的內(nèi)容,并使每個部分的分析更加容易。今天的圖像分割技術(shù)使用計算機視覺深度學(xué)習(xí)模型來理解圖像的每個像素所代表的真實物體,這在十年前是無法想象的。

深度學(xué)習(xí)可以學(xué)習(xí)視覺輸入的模式,以預(yù)測組成圖像的對象類。用于圖像處理的主要深度學(xué)習(xí)架構(gòu)是卷積神經(jīng)網(wǎng)絡(luò)(CNN),或者是特定的CNN框架,如、VGG、和。計算機視覺的深度學(xué)習(xí)模型通常在專門的圖形處理單元(GPU)上訓(xùn)練和執(zhí)行,以減少計算時間。

什么是圖像分割?

圖像分割是計算機視覺中的一個關(guān)鍵過程。它包括將視覺輸入分割成片段以簡化圖像分析。片段表示目標(biāo)或目標(biāo)的一部分,并由像素集或“超像素”組成。圖像分割將像素組織成更大的部分,消除了將單個像素作為觀察單位的需要。圖像分析有三個層次:

分割圖片怎么弄_ai中怎么把圖片分割成多個部分_圖片分割成很多小圖片

語義分割 vs. 實例分割

在分割過程本身,有兩個粒度級別:

分割圖片怎么弄_ai中怎么把圖片分割成多個部分_圖片分割成很多小圖片

傳統(tǒng)的圖像分割方法

還有一些過去常用的圖像分割技術(shù),但效率不如深度學(xué)習(xí)技術(shù),因為它們使用嚴(yán)格的算法,需要人工干預(yù)和專業(yè)知識。這些包括:

深度學(xué)習(xí)如何助力圖像分割方法

現(xiàn)代圖像分割技術(shù)以深度學(xué)習(xí)技術(shù)為動力。下面是幾種用于分割的深度學(xué)習(xí)架構(gòu):

使用CNN進(jìn)行圖像分割,是將圖像的作為輸入輸入給卷積神經(jīng)網(wǎng)絡(luò),卷積神經(jīng)網(wǎng)絡(luò)對像素進(jìn)行標(biāo)記。CNN不能一次處理整個圖像。它掃描圖像,每次看一個由幾個像素組成的小“濾鏡”,直到它映射出整個圖像。

傳統(tǒng)的cnn網(wǎng)絡(luò)具有全連接的層,不能處理不同的輸入大小。FCNs使用卷積層來處理不同大小的輸入,可以工作得更快。最終的輸出層具有較大的感受野,對應(yīng)于圖像的高度和寬度,而通道的數(shù)量對應(yīng)于類的數(shù)量。卷積層對每個像素進(jìn)行分類,以確定圖像的上下文,包括目標(biāo)的位置。

集成學(xué)習(xí) 將兩個或兩個以上相關(guān)分析模型的結(jié)果合成為單個。集成學(xué)習(xí)可以提高預(yù)測精度,減少泛化誤差。這樣就可以對圖像進(jìn)行精確的分類和分割。通過集成學(xué)習(xí)嘗試生成一組弱的基礎(chǔ)學(xué)習(xí)器,對圖像的部分進(jìn)行分類,并組合它們的輸出,而不是試圖創(chuàng)建一個單一的最優(yōu)學(xué)習(xí)者。

使用的一個主要動機是在幫助控制信號抽取的同時執(zhí)行圖像分割 —— 減少樣本的數(shù)量和網(wǎng)絡(luò)必須處理的數(shù)據(jù)量。另一個動機是啟用多尺度上下文特征學(xué)習(xí) —— 從不同尺度的圖像中聚合特征。使用預(yù)訓(xùn)練的進(jìn)行特征提取。使用空洞卷積而不是規(guī)則的卷積。每個卷積的不同擴(kuò)張率使塊能夠捕獲多尺度的上下文信息。由三個部分組成:

一種基于深度編碼器和解碼器的架構(gòu),也稱為語義像素分割。它包括對輸入圖像進(jìn)行低維編碼,然后在解碼器中利用方向不變性能力恢復(fù)圖像。然后在解碼器端生成一個分割圖像。

圖片分割成很多小圖片_ai中怎么把圖片分割成多個部分_分割圖片怎么弄

圖像分割的應(yīng)用

圖像分割有助于確定目標(biāo)之間的關(guān)系,以及目標(biāo)在圖像中的上下文。應(yīng)用包括人臉識別、車牌識別和衛(wèi)星圖像分析。例如,零售和時尚等行業(yè)在基于圖像的搜索中使用了圖像分割。自動駕駛汽車用它來了解周圍的環(huán)境。

目標(biāo)檢測和人臉檢測

這些應(yīng)用包括識別數(shù)字圖像中特定類的目標(biāo)實例。語義對象可以分類成類,如人臉、汽車、建筑物或貓。

視頻監(jiān)控 — 視頻跟蹤和運動目標(biāo)跟蹤

這涉及到在視頻中定位移動物體。其用途包括安全和監(jiān)視、交通控制、人機交互和視頻編輯。

零售圖像識別

這個應(yīng)用讓零售商了解貨架上商品的布局。算法實時處理產(chǎn)品數(shù)據(jù),檢測貨架上是否有商品。如果有產(chǎn)品缺貨,他們可以找出原因,通知跟單員,并為供應(yīng)鏈的相應(yīng)部分推薦解決方案。

英文原文: